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Novel phases of planar femionic systems 
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$ Yale University, New Haven. CT 06511. USA 

Received 29 August 1995 

Abstract. We discuss a family of planar (two-dimensional) systems with the following phase 
stcumre: a Fermi liquid, which goes via a second-order transition (with a nonclassical exponent 
even in the mean field) to an intermediate. inhomogeneous state (with nonstandard ordering 
momentum), which in turn goes via a first-order transition to a state with a canonical order 
parameter. 'We analyse two examples: (i) a superconductor in a parallel magnetic field for 
which the inhomogeneous state is obtained for l.86Tc 5 B 5 1.86&Tc where Tc is the critical 
temperature (in kelvin) of the superconductor without a field and B is measured in tesla; and (ii) 
spinless (or spin-polxized) fermions near Mf-filling where a similar, sizeable window (which 
grows in size with anisotropy) exists for the intermediate CDW phase at a momentum different 
from (n, n). We discuss the experimental conditions for realizing and observing these p h a s s  
and the renormalization group approach to the transitions. 

1. Introduction 

Zero-temperature quantum critical phenomena have been a subject of intense theoretical 
and experimental investigation in recent years. Of particular interest to us has been 
the renormalization group (RG) description of the transitions. In OUT pursuit of the RG 
debcription of two-dimensional fermionic systems; we came across a family of systems 
which exhibit similar phase smcture and similar phase transitions separating the phases in 
mean-field theory. Since this phase structure seems generic and experimentally accessible 
today, we have chosen to make it the focus of this paper, only briefly discussing the RG 

The systems in question exhibit three phases as a control parameter I is varied. Since 
the physics depends on the ratio W / I ,  where W is the interaction strength, we can either 
vary I at fixed W (which is what happens in experiments), or vary W at fixed I in a 
theoretical discussion. The phases of the system are a weakcoupling (largel) Fermi liquid 
phase, and a strong-coupling phase with conventional order, separated by an intermediate, 
inhomogeneous phase with nonstandard ordering momentum. The intermediate phase, 
which is the most interesting, is accessible Over a broad window in I (in clean systems) 
thanks to two dimensionality. Indeed, in anisotropic systems that are more one dimensional, 
the window is broader. 

We will illustrate our theme using two concrete examples: a system of electrons with 
an attractive coupling between up and down spins and a system of spinless fermions with 
nearest-neighbour repulsion. (We hasten to add that we will indicate how these 'spinless 
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fermions’ are to be realized experimentally by partially polarizing ordinary electrons in a 
manner to be specified.) 

Consider first the system of free electrons-by which we always mean Landau’s 
quasiparticles-with a circular Fermi surface (FS). They are unstable to the BCS state 
at arbitrarily small attraction W. The instability may be traced back to the time-reversal 
symmetry of the spectrum and hence of the FS: E(K) = E(-K). Now, this instability has 
a nice RG description. It was shown in [I] that in an RG scheme in which modes around 
the Fermi surface are symmetrically eliminated in thin slices, the Fermi liquid appears as a 
fixed point and the above-mentioned interaction appears as a marginally relevant term. The 
existence of a steady flow of the coupling in the simple mode-elimination scheme was also 
seen to result from the special symmetry of the Fermi surface. 

Consider next a system of free spinless fermions, at half-filling, with nearest-neighbour 
hopping on a rectangular lattice. This system is unstable to arbitrarily weak nearest- 
neighbour repulsion W which drives it to a charge-density-wave (CDW) state at momentum 
Q = ( x ,  z). The immediate instability is again due to a special symmetry of the FS: due to 
particle-hole symmetry and nesting, if K lies on the Fermi surface, so does K + Q. This 
instability also has an RG description, and, as shown in [I], the flow again occurs thanks 
to the symmetry of the specmm which changes sign under K + K f Q. 

We started~ by asking if such an RG description could be extended to transitions at 
nonzero coupling. A necessary prelude to such an enterprise was finding systems which 
exhibited such transitions. It was at that stage that we ran into the systems discussed here. 

Consider first the superconductor. To move the transition to a nonzero, but small 
coupling (this smallness will allow a perturbative RG analysis) we must destroy the time- 
reversal symmetry of its FS by a small amount. To this end, let us apply a magnetic field 
B parallel to the plane. This parallel field has no effect on the orbital motion but causes 
a Zeeman splitting of size 2pB = 21, where p is the electron’s magnetic moment. We 
expect that at very small fields the superconductor will be stable, while for very large fields 
the Fermi liquid will be stable. 

Our strategy for showing that there exists an intermediate inhomogeneous phase is as 
follows. We start at the BCS end and ask when the BCS state yields to the Fermi liquid 
as the fieId is raised. Then we go the Fermi liquid end at large 1 and ask what happens to 
it as the field is lowered. We find that it first becomes unstable to inhomogeneous pairing 
before the BCS state ‘beats’ it in energy. There is clearly a window where neither the BCS 
state or the Fermi liquid can be the ground state. 

Here are some details. Consider the response of the BCS paired state to a small magnetic 
field B. Since the spins form a singlet they ignore the field altogether. In the meantime, 
as B increases, the Fermi liquid energy decreases because it is getting polarized. Beyond 
the Chandrasekhar-Clogston [2] limit I F  = A,/& (where A. is the BCS order parameter 
in the absence of the field), the Fermi liquid has lower energy than the BCS state and one 
may expect a first-order transition (hence subscript F on I F )  to the polarized Fermi liquid 
(PFL). But what happens is that by this point a state with inhomogeneous order has ‘beaten’ 
the Fermi liquid, and the first-order transition is really to this state. 

To see all this, let us go to the weak-coupling end (large I )  where it is nz,tural to first 
find the FS in the presence OF the field and rhen turn on the amction. The radii of the up 
and down FS now differ by q = 2 I / u . ~ ,  where UF is the Fermi velocity, hereafter set equal 
to unify. The PFL is stable to pairing fluctuations, at least for small coupling or large I .  
If we perform the sum over Cooper bubbles and evaluate the pairing susceptibility as 1 is 
lowered, we find two interesting features: 

G Murthy and R Shankar 
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ZF at which the BCS energy rises above that of the PFL; 
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(i) the PFL susceptibility first diverges at Z, = Ao, which is & times bigger than the 

(ii) this pairing is at momentum q = 21. 

Thus we have a window 

A,/&= zF I = I, 

when the BCS state has a higher energy than the PFL, which itself is unstable to zhe 
inhomogeneous state. To repeat, as Z is increased, the BCS state will yield, via a first- 
order transition, not to the P E ,  but to an inhomogeneous state with wave number q Y 21. 
The phase diagram is shown in figure l(a). Actually the inhomogeneous state will prevail 
below the lower limit of the above window, since at the first-order transition the BCS state 
has to ‘beat’, not the P E ,  but the inhomogeneous state which has a lower energy. (For 
completeness we mention that at a still lower field, IO = A0/2, the q = 0 susceptibility of 
the Fermi liquid diverges. This is, however, not very significant since the corresponding 
instability is preempted by the other transitions.) 

I I I 

SUPERCONDUCTOR 

(a) 

CDW SYSTEM LARGE r 

(b) 

Figure 1. A linear phase diagram for (a) the superconductor and (b) CDW systems as I is raised. 
In both cases, lo is the value at which the Fermi liquid susceptibility for the uniform condensate 
diverges. It does not cormpond m a phase transition. In the CDW case lq is the value at 
which the Fermi liquid susceptibility diverges for momentum in the I direction. This too is not 
a real Uansition since the system has already condensed at lp 0 a state with momentum in the 
y direction. AU momenta are measured from (a, a) in the CDW case. 

Now for the spinless fermions. Here we.destroy the perfect nesting of the FS by 
introducing a chemical potential 1. (This possibility was raised in [I] along with another 
option: adding a second-neighbour hopping term, which we will consider only briefly.) We 
establish the window as before. Let us start at strong coupling (small I ) ,  and consider a 
CDW state at half-filling, with an order parameter Ao. Now imagine modifying the chemical 
potential. The system does~not respond to a change in the chemicalpotential which is moving 
in the gap-exactly as the superconductor did not respond to the.applied$efield Once again 
a mean-field calculation shows that the ~ ( x ,  a) CDW and the F’L have equal energies at 
IF = A o / ~ ,  where A0 is the condensate without the chemical  potential^ term. At the 
weak-coupling end, the FS has shrunk, as shown in figure 2, and becomes stable against 
particle-hole pairs condensing at Q = (a, a) or any other momentum. An WA calculation 
shows that as Z is lowered, the FL becomes unstable to a CDW at a momentum different 
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from (n. n) at I p  % rA0, where r 1 is an anisotropy parameter which measures the ratio 
of the hopping in the y and n directions. Thus we h e  a window A o / A  c r < rA0 where 
an inhomogeneous stale must prevail. This state is inhomogeneous in the sense that it is 
characterized by a momentum different from the canonical value, which in this case happens 
to be (n, x) .  The phase diagram is shown in figure I@). (The significance of the points I*, 
and IO, which do not correspond to transitions, will be explained in section 3.) 

G Murthy and R Shonkar 
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Figure 2 The dark lines show the anisotropic, two-branched, nested F e d  surface at half- 
filling. The vector Q connects any point on it 10 any other point. When the chemical potential 
is lumed on, the surface shrinks lo the thin line. There is no global nesting vector. 

In both the BCS and CDW cases the mean-field second-order transition from the FL to 
the inhomogeneous state was found to have nonclassical exponents. For example ,S = 2 for 
the superconductor. This nonclassical answer in a mean-field calculation may be ascribed 
to the fact that the mode that becomes unstable has a momentum which is a singular point 
of the susceptibility. This singularity and the existence of a fairly large window for the 
inhomogeneous phase both result from the two dimensionality of the system. 

In the next section we will discuss the 
superconductor and relate it to earlier work of  Larkin and Ovchinnikov, Fulde and Ferrel 
[3], and Bulaevskii [5]. In section 3 we will perform a similar analysis of the spinless- 
fermion system and describe how it may be experimentally realized. Section 4 is devoted 
to a status report on the RG programme. We end with conclusions and avenues for future 
research in section 5. 

The plan of the paper is as follows. 

2. The planar superconductor 

We will begin with noninteracting electrons lying within an annulus of thickness 2 h  centred 
around the Fermi circle of radius KF. We will construct a mean-field Hamiltonian that pairs 
the up and down electrons whose momenta lie within this band. 

The energy of an up electron is 

E + ( K ) = I + (  K=- 2m K: ) = I + v & = I + k  
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where the Fermi velocity V F  has been set equal to unity, and 

k = K - K,=. 
The energy of its partner, a down-spin electron of momentum -K + q, is 

E-(-K+q) = -Z+k -qCOSB (3) 
where 0 is the angle between K and q. 

(It is understood that -K+q is also constrained to lie in the same annulus. This means 
that certain electrons will not have partners for pairing in a state. of momentum q. They 
must be handled correctly.) 

A useful combination is 

Let us begin with the mean-field Hamiltonian 

H = 7 AA’ + C d k L a d - 9  [ c ~ ( K ) c + ( K ) ( Z + k ) + c l ( K ) c - ( K ) ( - Z + k )  

-@(A - IIK - Q I  - KFI) [hci(-K+ d C i ( K )  

+A*c-( K)c+(-K + q)]] (5) 

where the condensate was taken to have the form A(x) = A exp[iq. TI ,  the step function 
@(A - [IK - qI - KFI) ensures that the other partner in the pair also lies in the annulus, 
and the subscripts refer to the spin. The reader should not worry about factors of 2n since 
all key results will be given in term of observables. 

By going to Bogoliubov operators d* and performing the usual transformation that ‘kills 
the bad terms’, we obtain 

n q 2  +- - 4Aq. 
2 

The last two terms come from the unpaired electrons. The ground state is found by filling 
all negative energy states. (If we set A = 0 above, the ground-state energy should reduce 
to -2n(Az + I’), the energy of the PE.)  If we subtract off the energy of $e P E ,  we find 
the relative energy 

+I” dB [B(z - A) [-z=+ A’ln ‘-1 A + z  -+ -z] 

4 
2 

z ( B ) = Z + - c o s ~  

where A and A’ stand for 1A1 and 1AI2. 
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Most of our results are based on an analysis of this equation. 
The first term comes from subtracting off the polarization energy of the PFL. As for the 

B integral let us note that if A z I i- q / 2 ,  it does not contribute. It is clear that nonzero q 
is a liability in this region and the minimum energy is readily found to occur at A0 given 
by 

1 2A - =2rrln- 
W Ao 

exactly as if B were never turned on. This is just the manifestation of the fact that the BCS 
system ignores the field. The condensation energy (relative to the PFL energy) is found to 
be 

(9) E ( A )  - E(0) = n(212 - Ai) 

which leads to the result that IF = Ao/& is the field at which the BCS system yields to 
the Fermi liquid. (Since A0 = &?IF > IF the answer is consistent with the assumptions 
made in deriving it.) 

Now for the weak-coupling (or large-I) Fermi liquid end. Either by summing all the 
Cooper bubbles, or by taking the A’ derivative of the energy at A = 0, we find the formulas 
for x-’. (In taking this derivative it is important to note that if I > 412, z (0)  is always 
positive and only the first term in the B integral contributes, whereas if q / 2  z I ,  the second 
contributes for A = 0.) The result is 

2 h  
2rrln- q / 2 >  I .  

1 = _ -  
W qJ2 

Note that at each value of I (the applied$eId), the softest mode is the one with 412 = I 
and that this is a singular point of x. This mode becomes unstable when I = Iq,  where 

212 
2?r In -. 1 -=  

W 4 
If we compare this equation to the gap equation in the absence of a field 

1 2A - =2rrln- 
W Ao 

we see that 

Thus we have a window 

wherein neither the Fermi liquid, nor the homogeneous superconductor is the ground state. 
(Actually the lower limit should be lower since the BCS state has to ‘beat’ not the PFL but 
the inhomogeneous state. However, the condensation energy of the inhomogeneous state is 
quite small, and so is the change in the lower limit.) 

If we put in the numbers we find that if B is in tesla and T, in kelvin, the new phase 
should be stable in the interval 

1.86Tc S B 5 1.86&,. (17) 
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We have used here the free-electron g factor. In practice g could be much higher, and the 
values of B correspondingly lower. 

100 I ... 
1 - 0 
w 

Figure 3. The energy of the the inhomogeneous and uniform BCS states relalive to the polaized 
Fermi liquid (PF'L) as a function of the order parameter A, just when the BCS energy (labelled 
q = 0) relative to that of the PF!- vanishes. This is the point I f  = A"/* in figure 1. Note 
that that at this point the inhomogeneous state has B lower energy. The optimal momentum is 
somewhat larger than I .  Given the energy scales, it clear that under a very slight reduction of 
I ,  the BCS state will dip below the inhomogeneous state. Thus we may take IF = A"/-& as 
the transition point between the uniform state and the inhomogeneous state. 

Figure 3 shows a plot of the energy (in equation (7a)) versus A. The parameters 
A = 100. I = 0.834, W = 0.031 are chosen so as to bring the BCS energy (measured 
relative to the P E )  to zero, i.e., we have chosen I = Ao/&. Plotted on the same graph 
is the energy of the inhomogeneous state at q / 2  = 0.923. Note that this q / 2  is not equal 
to I .  In other words, although q / 2  = I becomes unstable first, once the order se? in 
a larger q / 2  does better and the graph shows the energy for the best q/2 .  If we lower 
I slightly, the BCS state will dip down very quickly to below the inhomogeneous state. 
Thus we may take I = A O / d  to be essentially the field for the first-order transition to 
the inhomogeneous state. If I is raised further, the BCS graph will move upwards and so 
will the inhomogeneous state's energy at the minimum. As the minimum moves towards 
the origin, the optimal q / 2  will move towards the current value of I .  Finally for I > A0 
the PFL will become stable to all pairing fluctuations. The transition to the PFL is clearly 
second order in mean-field theory. 

From the energy formula it is easy to compute the specific heat by finding  the^ density 
of states, and the magnetization by taking the I derivative. (Since q / 2  and A are 'slaved' 
to I one may ask how they are to be handled during the derivation. In general there will 
be changes in E implicit and explicit to a change of I ;  however, at a point where aE/aq 
and aE/aA vanish (as they do for us), only the explicit derivative matters.) The result is, 
in terms of the corresponding quantities for the PFL, 

where A and q / 2  are at their optimal values. Putting in the numbers we find that these 
ratios' drop from the value of unity, at the 'FPL end, down to 0.92 and 0.79 respectively 
by the time we reach the situation shown in figure 3 (which is more or less the end of the 
inhomogeneous phase). 
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Let us next compute the exponent j3 which characterizes the onset of A. If we could 

(20) 

where t = A0 - I ,  we would find as usual that A N t'lz. If however, we analyse our 
energy function we find that 

(21) 

write the energy near the transition as 
E = -tA2 + uA4 f.. . 

E = -tA2 + uA5I2 + . . . 
leading to j3 = 2. In other words, the energyfunction does not h e  an analytic expansion 
in A near the transition, which in turn can be traced to the f a t  that the optimal 412 at the 
transition is a singular point of x-' .  Thus even though we are doing mean-feld theory, a 
nonclassical exponent emerges. 

We could go on and compute the electromagnetic response functions, but we do not, 
for the following reasons. Our analysis has shown that in the window 

- - S I S , &  Ao 
l / i  

an inhomogeneous state characterized by momentum of magnitude q (which is of the order 
I )  has lower energy than either the PFL or the BCS state. However, our analysis does not 
choose a particular direction for q. Thus, as in problems involving, say, crystallization 161, 
all modes in this circle are degenerate. In this case the low-energy physics of the condensate 
is very much like that of a Fermi system, i.e., centred around a circle and not the origin. 
Recently Hohenberg and Swift [7] have shown how the shell elimination devised in [I] 
for fermions can be applied to this problem. For the present simply note that, instead of 
the plane wave we considered so far, a standing wave of the same wavelength might have 
a lower energy. The standard trick for deciding what exactly happens is to expand the 
energy functional in a power series in A(q) ,  going out to fourth order. The fourth-order 
vertex (which is the particleparticle bubble with two more insertions in it) will determine 
which combination of modes is best near the transition. Unfortunately we cannot do this 
here since an analytical expansion in A does not exist. While we may expect that j3 = 2 
may be insensitive to the actual form of the order parameter (plane wave versus cosine), 
features like specific heat will he very sensitive to the true ground state. For example if 
A N cos qr, bands will be formed and the density of states can go up above the PFL value. 
The only thing that seems certain is that the specific heat will not be activated. Likewise the 
electromagnetic response and Meissuer effect (for a small perpendicular field) will depend 
on the knowledge of the true ground state. This is a problem we have not salved. All we 
can say is that if the answer is a cosine, there will be an oscillation in spin density at the 
same wavelength. 

We now consider the relation of our work to the Larkin-Ovchinnikov and Fulde- 
Ferrel 13, 41 results. These authors considered a threedimensional superconductor with 
ferromagnetic impurities. The spins of these impurities were coupled to the eleceons via 
the exchange interaction so that they could be represented on average by some external field 
that coupled only to spin. These authors too predict an inhomogeneous phase. We now list 
the differences between our work and theirs. 

(i) These authors consider a system coupled to magnetic impurities while we need a 
clean system. 

(ii) They evade the orbital complication of the magnetic field (even though they work in 
three dimensions) because the field really represents the exchange interaction with impurities. 
We evade it by considering a planar system with an extemal parallel field. 



Novel phases of planar fermionic systems 9163 

(iii) Most importantly, they expect the inhomogeneous phase over a very narrow 
window 0.707A0 < I < 0.755A0 in three dimensions whereas we expect it over a broad 
window 0.707110 < I < A0 in two dimensions, with I the controllable extemal field. 
The window will be even wider in anisotropic systems (e.g. with elliptical FSs) because 
they are more one dimensional and will have roughly parallel segments of the FS over 
longer intervals. 

(iv) Due to the fact that the optimal q is a singular value of x-' we find nonclassical 
exponents (b = -2) in the mean-field level, while they find classical exponents due to the 
fact that the optimal q ,  for small A, is q = 1.21, which is a nonsingular point of the three- 
dimensional susceptibility. This allowed Larkin and Ovchinnikov to study mode coupling 
and to decide that the cosine order parameter is better than the plane wave. Till we can do 
a similar thing here it may be a reasonable to assume that the same thing happens in d = 2 
also. In this case we may expect, as they do, that the spin density will will oscillate with 
period q and that the specific heat will be greater than for the PFL. 

Consider next the work of Bulaevskii [SI. He looks at layers in a magnetic field and 
works out critical fields for any tilt and at finite temperature. His formula for zero tilt at 
zero temperature gives the window we quoted. The exponent p = 2 is reflected in the T 
dependence of his results. Like us, he does not consider spin-orbit coupling and for this 
reason could not explain some of the experiments [8] done at that time, as pointed out by 
Klemm, Luther and Beasley [9], who did include this effect. It appears that the time is ripe 
to see this inhomogeneous phase. The conditions are that the material be as two dimensional 
as possible, clean, have low Z (to minimize spin-orbit effects from defects) and have a low 
T, so that the requiredfields are not too large. This will be interesting, not only in its own 
right, but also as a part of the family of systems discussed here. Of course, at finite T, 
there will be no ordered phase~and a Kosterlitz-Thouless phase with algebraic order will 
take its place [lo]. The phase structure will still be visible at,small T and the T = 0 critical 

 point will control the finite-T physics in the quantum critical region as in other problems 
111, 121. 

3. The spinless-fermion system with CDW order 

We begin by reassuring our readers that what we mean by a spinless fermion can be 
experimentally realized in at least one way. In the idealized calculation we consider a 
system of spinless fermions that fills up a nested Fermi sea and ask what happens as we 
tamper with the nesting by changing the chemical potential. Assuming that all the action is 
centred around the immediate vicinity of the Fermi surface, i.e., that the interaction and the 
change in chemical potential Z are small compared to the bandwidth, we can duplicate the 
same physics near the Fermi surface as follows. We take ordinary electrons and fill them up 
to, say, 45% (instead of half) of the Brillouin zone. Now we apply a magnetic field in the 
plane. This does nothing to the orbital motion but splits the spin-up and spin-down Fermi 
surfaces. For some choice of field, the bigger of the snrfaces will begin to nest, while the 
other would have moved away in the opposite direction and will, we hope, not do anything 
interesting. The polarized electrons with a nested or nearly nested Fermi surface will be 
the spinless fermions of the theoretical calculation. Of course a CDW in this case will also 
imply a spin-density wave or SDW. 

As in [l] we will consider free fermions with the dispersion relation which comes from 
nearest-neighbour hopping: 

E ( x ,  y )  = - cosx - r cos y (22) 
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where x and y stand for K, and Ky. We choose anisotropic hopping since the generic 
physics we are talking about can be obscured by the van Hove singularities that lie on the 
Fermi surface when r = 1. We will work with r 1. This energy relation satisfies the 
condition 

(23) 
and the vector Q = (n, n)  connects points on the two branches of the Fermi surface, 
labelled by LY = fl as shown in figure 2. At half-filling the Fermi surface is defined by 
E = O o r  

E(x + R, Y + X )  = -E(x ,  Y )  

(24) 
y = +  cos-’[--] cos x aYcos-l[--]. cosx 

r r 
We will shortly use a variable E that measures the energy from the FS of the free 

Imagine tuning on a chemical potential so that 
particles. In our problem, where the FS is at zero energy, & = E .  

E ( x ,  y) = - cosx - r cos y + I .  (25) 
The Fermi surface of the free fermions will now shrink to a smaller size and no longer nest. 
Of relevance is the combination 

~ , ,  , ,  
+n + q ,  Y + + p )  - E ( x ,  Y) 

2 

In the above formula, 01 = f l  is the branch index, and, as everywhere else in the paper, 
terms of quadratic order or higher in the small quantities I ,  p ,  q will be ignored. 

Once again we limit ourselves to a band of energy A on either side of the free-electron 
FS. To this end we change variables from ( x .  y) to ( x .  E ) ,  where E measures the energy 
from the FS. (See [I] for details.) As a result .. , 

dx dy + I dx ds  J ( r ,  x )  (27) 

where the Jacobian is 

(28) ~~ 

1 
Jr2 - cosz x 

J(r, x )  = 

on the free-electron FS. We will ignore its deviation off the FS. It is useful to define 

- 1 ”  
J =z;l J ( x )  dr. 

The mean-field Hamiltonian is 

+[:d&i” dx J ( r , x ) O ( l ~ ( x  + H + 4 ,  Y fir + p)I < A) 

x ~ c ~ ( K ) c - ( K + Q + i q + j p ) + A * c ~ ( K + Q + i q + j p ) c + ( K ) ]  

(30) 
where now the subscripts f on the operators refer to the branches of the FS. 
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To exhibit the intermediate phase, let us assemble the two ingredients: (i) the energy 
difference between the Fermi liquid and the ( x ,  x )  CDW state; and (ii) the inverse Fermi 
liquid susceptibility (in the RPA) to CDW formation at momentum (x  + x + q. y +I + p ) .  
The spacc bctween the zeros of these gives a window in Z for the inhomogeneous state. 

A standard mean-field calculation, as in the superconducting problem, shows that for 
A > I ,  the energy difference between the (r, a )  CDW state and Fermi liquid is 

A 
This energy difference has a minimum at 

Feeding this back into the energy formula we find that the Z at which the ( x .  a)  CDW state 
loses out to the Fermi liquid is 

Ao Z, = -. 
.Jz (33) 

(Note that once again the answer is consistent with the assumption A > Z that went into 
its derivation.) 

On summing the usual particle-hole bubbles, the inverse susceptibility of the Fermi 
liquid is found to be 

where zu is the value of z on branch CY, as defined in equation (26). This gives 

First note that the uniform CDW (i.e., (n, x ) )  mode becomes singular when I = 20 
where 

i.e., at 

Next we consider just nonzero q. The instability occurs when 

(37) 

Let us consider this equation at large r where the analysis is easier. Now J N l / r  and 
2A 

q/2 < z 

q/2 > I .  
(39) 

1 ?In Z + JiqaV 
2ir 212 - In - 
r 412 

W 
.~ 

The optimal value is q/2 = Z, and we find upon inverting the above that the Z value at 
the onset of the instability is 

Iq=2Aexp[--]=2Aexp[--] r 1 =Ao. 
2xw 2xJW (40) 
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At r not too large, but also not too close to unity (so that the singularity of the Jacobian 

So far we have found the same window as in the case of the superconductor, name!y 
does not dominate the integral), similar results hold. 

But the window gets wider if we look at nonzero p .  (This is also clear from figure 2.) Now 
we have 

A 
41’ - (p/2)2(r2 - coszx) 

211 1 
= 1 r ( r ,x )  d~ In 

(42) 
A 

= 1% J(r. x )  In 
JZZ - (rp/2)2 + (P~/s)  + (P~/s)  cos 2x1 ’ 

For large r, this integral is seen to be a maximum when p = 2I / r  where its value is 
(2n/r) ln(2Ar/Ip) so 

Zp = rAo. (43) 
The following table shows the deviation from this result for smaller r. In all these cases 

the optimal p was found to be 2Z/r. Note that the large-r results are not bad for r as low 
as 1.1. 

r 1.1 1.5 2.5 3.5 
Zp/rAo 0.83 0.93 0.98 0.99 

The final phase diagram is as shown in figure l(b). The main point is that as the anisotropy 
grows, so does the window, since the system is becoming increasingly one dimensional 
and the opposite faces of the Fermi surface are becoming globally parallel. (In the limit of 
parallel faces there exists a perfect nesting vector for any 1.) 

We will not consider the general case of a nonzero q and p since we have already 
seen a substantial window for observing the inhomogeneous phase. We also do not try to 
compute its energy as a function of A (as we succeeded in doing for the superconductor) 
because of the following problem. Recall that in the superconductor problem we coupled 
K to -K + q. That in turn must be coupled to -(-K + q) + q = K ,  which means only 
two modes are to be coupled. In the present case we coupled K to K + (n, n) + q,  which 
in turn must be coupled to K + 2q and so on. We did perform a calculation keeping just 
the first coupling to exhibit a variational wave function which could ‘beat’ the Fermi liquid 
and the (ir, n) state inside the window. 

Due to the fact that the optimal momentum p at the transition is a singular point of x ,  
we can once again expect nonclassical exponents. We guess that ,5’ will be larger than the 
classical value-probably equal to 2 once again. 

3.1. Experimental realization 

Let us now turn to the experimental realization of this system. We start with a system of 
real electrons not too close to half-filling, say at 45% filling. At zero temperature, this 
will probably be a BCS superconductor. Next we apply a parallel magnetic field. This is 
the problem we just studied. The BCS state will eventually pass via the inhomogeneous 
superconducting phase to the polarized Fermi liquid as the field ‘rips apart’ the Fermi 
surfaces of the up and own spins. (Here we must choose a material with a large g factor for 
the electron.) Focus on the two Fermi surfaces. One shrinks further away from half-filling 
and, we hope, does nothing interesting. The FS of the growing species will now come close 
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to nesting as the field is raised. This species of polarized electrons constitutes the spinless 
fermions of the calculation, while the appliedjeld which adds a constant ( & e m )  energy 
per particle, will play the role of  the^ changing chemical potential. Note, however,l that as 
the magnetic field grows and pushes the FS closer to nesting, the I in the spinless version 
decreases. At one point the system should enter the inhomogeneous CDW phase, which 
here means that the spin density also will oscillate with a momentum slightly different from 
(n, a). Eventually the system will jump by a first-order transition to the (n. n) state. In 
other words, when the chemical potential falls within a window, the system density locks 
at half-filling, taking particles from the reservoir, which in  this^ case is the other species 
of spins. We should see a sudden increase in polarization which should then remain fixed 
as the field is increased since the up and down densities remain locked. (Unlike in' the 
case of an ideal reservoir which can donate any number of particles at one energy, there 
will be a cost of energy when a macroscopic number of fermions have to be converted 
from the shrinking FS to the growing one. This will decrease the region of stability of the 
commensurate (n, n) CDW phase.) If the field is raised further, we are effectively changing 
the sign of I and so the same picture will appear in reverse: a first-order transition to the 
inhomogeneous state followed by a second-order transition to the Fermi liquid. 

By design, the grand canonical picture applies to the above experiment, where the system 
of polarized electrons is indeed in contact with a reservoir (of opposite-spin electrons). The 
free parameter is the chemical potential or the applied magnetic field, and the particle density 
is chosen by the system to minimize its.energy. 

112 -I 
n 

Figure 4. The phase svucture as a function of number density n as well as chemical potential 
I .  As I is raised, the system evolves along the x axis from the (n, I) CDW state to the 
inhomogeneous state to the P E .  As a function of n, the slightest doping from half-filling leads 
to phase coexistence until n comes down to nq. Thereafter the behaviour is quite smooth. 

Now the ideas discussed above also apply to other problems where the number density 
is the independent variable, say when a system of regular electrons at half-filling (as in 
a Hubbard model) is doped. Whereas if we take a commensurate system and change its 
chemical potential, it will initially ignore this and 'hang on' to its special density, here we 

' want to forcibly change the number density and see what happens. We illustrate what is 
to be done in such a case by re-expressing the above spinless-fermion analysis in terms of 
number density. In other words we ask suppose we took a half-filled system of spinless 
fermions and doped it, what would it do? Figure 4, which is schematic, helps us to analyse 
this. Along the x axis we v a q  I ,  the chemical potential, and cover the three phases. The 
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CDW phase refers to the (x, n) state. We find (in our calculation) that it has half-filling 
for all I up to the first-order transition. So we plot the corresponding n as a dark horizontal 
line going to the transition. A slight increase in I causes a first-order transition to the 
inhomogeneous state. It has a lower density nq. Further increase in I causes a decline in 
n until we reach the second-order transition to the Fermi liquid. There is no jump in n. 
Hereafter n and I are related as in a free Fermi liquid n = f - 1. (The coefficient of I, the 
density of states, is set to unity). Now we can answer the question we posed. To find out 
what happens at any given density, choose a value for n, move horizontally to the dark line 
and come right down to the phase diagram on the I axis. Thus when n = lj2 the system 
is in the (n. n) state. As n is lowered, ever so slightly, the system is stuck at the first-order 
transition and there will be coexistence of the (n, n) CDW and inhomogeneous states, the 
ratio being determined by n. When n is lowered down to n,, the system will become 
all inhomogeneous. Thereafter we move smoothly along the dark line to the Fermi liquid 
transition and Fermi liquid phase. Thus, although a slight change in chemical potential does 
nothing to the (a, n) state, the slightest doping causes phase coexistence. 

The above discussion has focused on breaking the nesting symmetry by changing the 
chemical potential. This is the choice with the closest analogy to the superconductor. We 
have also studied a case where nesting is destroyed by adding a second-neighbour term 
which causes additional wiggles on the FS without changing its volume. Here we find that 
the window for the inhomogeneous state shrinks. In the large-r limit, it goes to zero: the 
second-order transition at the origin in A space occurs when the first-order transition does. 
It is still interesting that the first-order transition far from the origin will be accompanied 
by huge fluctuations (at an incommensurate momentum) close to the origin. The reason for 
the uniform state being more stable in the presence of this kind of modification of the FS 
is clear: whereas changing Z ruins nesting at (n, n) uniformly over the FS, the additional 
term due to second-neighbour hopping vanishes at some points on the old FS. Indeed any 
modification to the dispersion relation~will necessarily be periodic and vanish somewhere, 
unless the periodic function is a constant, as when due to a change in chemical potential. 
Only in the case where the new free-electron FS does not intersect with the old FS anywhere 
do we have a big window for the inhomogeneous state. 

A problem that we consider worth studying is that where both a second-neighbour 
term and chemical potential destroy the nested Fermi surface, with the latter as the control 
parameter. 

4. The renormalization program 

As mentioned earlier, the simple and intuitively appealing procedure of eliminating thin 
slices on either side of the FS works in the case of problems where the FS has special 
symmetries. The reason for this, as explained in detail in [I], is as follows. When we 
compute a one-loop graph for the ,3 function, the two lines in the loop are either particle 
hole (in the CDW case) or particle-particle (in the BCS case) lines. To get a nonzero 
contribution to thepow, it is necessary that both lie in the thin shells being eliminated and 
also obey momentum conservation. In the BCS case, if the overall momentum is zero, these 
lines have equal and opposite momenta. Given time-reversal symmetry, they have equal 
energies, so if one lies in one or the other shell (above or below the FS) that is being ' 
eliminated, so does the other, no matter what the direction of the line momentum is. In the 
CDW case, the momenta of the particle and hole lines differ by Q = (n, n). Since this 
reverses the energy for the nested problem, again if one lies (anywhere) in the shell below 
or above the FS that is being eliminated, the other lies in the shell of opposite energy, also 
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being eliminated. 
In both cases, no matter how many shells we eliminate, the couplings keep flowing, 

with each factor-of-s reduction in cut-off giving a contribution proportional to Ins. The 
flow is off to the condensed state. 

All this changes if we break  the^ symmetry. Consider the CDW example. Now in 
order for one of the momenta to lie in a shell of thickness dA and scatter into another one 
also being eliminated, its momentum must have a very specific direction that lies within a 
narrow range of size equal to the shell thickness divided by bandwidth. Thus in the shell 
elimination ‘game’, there will be no flow. This is not an insurmountable problem. In [l] 
another scheme called the field theory scheme (FTS) is invoked. Here one computes some 
physical quantity in the cut-off theory and sets the derivative with respect to the cut-off to 
zero to obtain the ,9 function. We get the same flow as before for A << I. The flow does 
change character as A approaches I, as it should, and indicates a transition. But we are not 
very happy with this method since the FTS is not generally to be used when any of the other 
energies in, the problem come close to A. This is because in the FTS one hopes that just 
the quartic interaction will be sufficient, and this requires that the cut-off dominate all other 
energies. In other words  the^ smallness of ratios like p/A or q / A  is what allows one to 
neglect higher operators. In the fully fledged Wilson-Kadanoff scheme there is, of course, 
no such restriction, provided one works with operators of arbitrary complexity, a prospect 
that we do not want to entertain. We are currently engaged in solving this problem. 

variable A as in a HubbardStratonovich transformation, integrates the fermions out, and 
works with the effective action for A. t as mentioned in [l], this is generally going to cause 
trouble since integrating out gapless degrees of freedom (anathema to the standard RG) can, 
and typically will, lead to a singular action for the remaining fields. If one did this for the 
usual BCS problem, one would find that the action cannot be expanded in powers of A. 
Even with the I~ term present, the action is nonpolynomial in A since the chosen momentum 
at the transition to the inhomogeneous phase is a singular point of the susceptibility. (In 
three dimensions this is not so because of phase space. In one dimension the singularity 
is even more pronounced.) Even if the action is polynomial, it may not have an analytic 
expansion in OJ or q. Hertz has argued that in some cases we~can still find the right scaling 
when this happens. 

Returning to the general problem, one option is to keep both the fermions and bosons 
together and not eliminate only nonsingular modes. This is what one does in problems 
where gauge fields couple to fermions. In such cases the following question arises. For 
bosons the energy is measured from the origin in momentum space while for fermions it 
is measured from the FS. How are high- and low-energy modes to be defined? A boson 
that imparts a momentum parallel to the fermion momentum can take it beyond the cut- 
off (and is a high-energy boson) while the same boson, if it attaches itself to a fermion 
with a perpendicular momentum, will move along the FS and be a low-energy boson. A 
common solution is to pick a point on the fermion’s ES and treat bosonic momenta in radial 
and angular directions distinctly. We find this approach to a rotationally invariant problem 
disturbing, even though, for reasons that we do not fully understand, it might work. On the 
other hand a recent paper by Altshuler,~ Ioffe and Millis [ 141 describes a class of problems 
where such a choice of coordinates is warranted. These authors consider a FS which is not 
rotationally invariant and of which only two small segments (parallel under translation by 
a vector Q) are important. In this case there is a preferred fermion direction, and using the 
fermion dispersion relation near these points to decide which bosons are high-energy ones 
and which are low-energy ones seems legitimate. This is one very promisingpossibility we 

~ Another approach is to follow Hertz [13]. Here one couples the fermions to a bosonic 
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intend to fully digest when we resume our RG programme. However, for isotropic problems 
involving bosons and fermions, we believe that there is still need for improvement. In the 
meantime we can take the attitude that, since no problem is really isotropic, one may begin 
by attacking the gauge problems by starting with, say, an elliptical FS and trying the scheme 
of Altshuler et al. 

G Murthy and R Shankar 

5. Conclusion 

We began with the result given in [I], that quantum phase transitions at zero coupling, 
which exist due to special symmetries of the FS, can be given an RG description in which 
shells of energies near the FS are symmetrically eliminated. Two examples given in [I] and 
discussed here were the planar superconductor (with a time-reversal-invariant spectrum) and 
planar spinless fermions at half-filling (with nesting symmehy of the FS). The goal was to 
extend the description to transitions at nonzero, but small, coupling so that a perturbative 
RG would be possible. To this end we had to come up with systems with such transitions, 
study them in the mean field to map out the phase structure, and then apply the RG to the 
transitions. The first step was accomplished by destroying the symmetries of the FS by 
adding a term I to the Hamiltonian. In the superconductor this was a parallel field and in 
the spinless-fermion case it was a chemical potential. The mean-field analysis shows us the 
following. 

(i) The two systems have very similar phases and phase transitions. 
(ii) The phase at large I (or small coupling) is a Fermi liquid. This is a polarized 

Fermi liquid in the BCS case. The next phase as I is reduced is an intermediate state 
with a condensate that has a nonzero momentum with respect to the canonical value, this 
being zero for the superconductor and (n, n) for the CDW. For this reason we call it the 
inhomogeneous phase. It has gapless excitations along with the nonzero order parameter. 
We have computed some of its properties for the superconductor. The last phase (at small 
I )  is a state with condensate at the canonical momentum, which we call the homogeneous 
state even though Q = (n. K) for the CDW. 

(iii) The transition from the Fermi liquid to the inhomogeneous state is second order 
in the mean field but with nonclassical exponents: ,9 = 2 for the superconductor. The 
nonclassical exponents arise because the chosen momentum for the condensate is a singular 
point of the Fermi liquid susceptibility. The transition from the intermediate state to the 
homogeneous state is first order. 

(iv) The window for the inhomogeneous state is large due to two dimensionality. Indeed 
anisotropic systems have larger windows since they are more one dimensional. Recall that 
for the CDW case 

where r is the anisotropy. We expect a similar enlargement of the window for anisotropic 
superconductors. 

Our analysis has many limitations. First it is a mean-field analysis. The order of the 
transitions may change. (The analysis of Altshuler er aE suggests both transitions may be first 
order.) However, given the large windows, the intermediate phases should not disappear 
due to fluctuations. 

Our analysis ignores impurities and spin-orbit scattering. To see the phase discussed 
here will require clean, low-2, two-dimensional systems and strong magnetic fields. For 
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the CDW case, where we try to move the FS using the field, a large g factor will help. It 
appears that we are at the threshold of having all of these. 

Our analysis is at T = 0. This is not for technical reasons and can be readily overcome. 
While our RG programme has naturally led us to study this family of systems, the 

systems themselves are not new. Rather than focus on individual system, we have taken a 
slice through them and emphasized the common thread that runs through many of them. Our 
next step is to go through individual cases that have been studied experimentally and see 
whether or not they could belong to this family, i.e., to see whether they were clean enough, 
and two dimensional enough, to satisfy the various assumptions made in the derivation etc. 
For example, do our considerations possibly apply to granular superconductors [15, 16]? 
Do they apply to CDW transitions induced by application ofpressure [17]? In the meantime 
we emphasize to the experimentalists that the intermediate inhomogeneous phase in any one 
system will not only be fascinating in its own right, but also in terms of the family. 
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